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Abstract: In the last two decades, fractional calculus has been rediscovered by scientists and engineers and 
applied in an increasing number of fields, namely in the area of control theory. Recently, many research works 
have focused on fractional order control (FOC) and fractional systems. It has proven to be a good mean for 
improving the plant dynamics with respect to response time and disturbance rejection. In This work we use the 
Sub-optimal Approximation of fractional order transfer function to design the parameters of PID controller and 
we study the performance analysis of fractionalized PID controller over integer order PID controller. 
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1. INTRODUCTION 
The theory of fractional-order derivative was 
developed mainly in the 19th century. Recent 
books [1],[2],[3] provide a good source of 
references on fractional calculus. However, 
applying fractional-order calculus to dynamic 
systems control is just a recent focus of 
interest [1],[4],[9]. 
The earliest theoretical contributions to the 
field were made by Euler and Lagrange in the 
eighteenth century, and the first systematic 
studies seem to have been made at the 
beginning and middle of the nineteenth 
century by Liouville, Riemann, and Holmgren. 
It was Liouville who expanded functions 
in series of exponentials and defined the nth-
order derivative of such a series by operating 
term-by-term as though n were a positive 
integer. Riemann proposed a different 
definition that involved a definite integral and 
was applicable to power series with non-
integer exponents. It was Grünwald and Krug 
who first unified the results of Liouville and 
Riemann. Grünwald, by returning to the 
original sources and adopting them as 
starting points. The definition of a derivative 
as the limit of a difference quotient and 
arriving at definite-integral formulas for the 
nth-order derivative. Krug, working through 
Cauchy’s integral formula for ordinary 
derivatives, showed that Riemann’s definite 
integral had to be interpreted as having a 
finite lower limit while Liouville’s definition 
corresponded to a lower limit −∞. 
The first application of the fractional calculus 
was made by Abel in 1823. He discovered 

that the solution of the integral equation for 
the tautochrone problem could be obtained 
via an integral in the form of derivative of 
order one half. Later in the nineteenth 
century, important stimuli to the use of 
fractional calculus were provided by the 
development by Boole of symbolic methods 
for solving linear differential equations of 
constant coefficients, or the operational 
calculus of Heaveside developed to solve 
certain problems in electromagnetic theory 
such as transmission lines. 
In the twentieth century contributions have 
been made to both the theory and 
applications of fractional calculus by very well 
known scientists such as Weyl and Hardy 
(properties of difier integrals), Erdely (integral 
equations), Riesz (functions of more than one 
variable), Scott Blair (rheology), or Oldham 
and Spanier (electrochemistry and general 
transport problems). 
In the last decades of the last century there 
was continuing growth of the applications of 
fractional calculus mainly promoted by the 
engineering applications in the fields of 
feedback control, systems theory, and signals 
processing However, this also implies that the 
tuning of the controller can be much more 
complex. In order to address this problem, 
different methods for the design of a FOPID 
controller have been proposed in the 
literature. 
The concept of FOPID controllers was 
proposed by Podlubny in 1997. He also 
demonstrated the better response of this type 
of controller, in comparison with the classical 
PID controller, when used for the control of 
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fractional order systems.   
The main contribution of this work is the use 
the fractionalized PID controller approach to 
reduce noise effect   by introducing fractional 
order filters in the classical feedback control 
loop PID controller without changing the 
overall equivalent closed loop transfer 
function. 
This paper is structured as follows: Section 2 
is an fundamentals of fractional calculus. 
Section 3 presents numerical algorithm for 
Sub-optimal Rational Approximations, and the 
fractionalized PID controller and simulation 
results are given  is given in section 4 and 5. 
Finally, the conclusion with future work are 
presented in section 6. 

2. FUNDAMENTALS OF 
FRACTIONAL CALCULUS 

Fractional calculus is an old mathematical 
topic since 17th century. Fractional calculus is 
a subdivision of calculus theory which 
generalizes the derivative or integral of a 
function to non-integer order. Fractional 
calculus helps evaluating (dny/dtn), n-fold 
integrals where n is fractional, irrational or 
complex. For fractional order systems n is 
considered to be fractional. The number of 
applications where fractional calculus has 
been used rapidly grows. These mathematical 
phenomena allow to describe a real object 
more accurately than the classical ―integer-
order‖ methods. The real objects are 
generally fractional however, for many of 
them the fractionality is very low. The main 
reason for using the integer-order models was 
the absence of solution methods for fractional 
differential equations. At present there are 
lots of methods for approximation of fractional 
derivative and integral and fractional calculus 
can be easily used in wide areas of 
applications (e.g.: control theory - new 
fractional controllers and system models, 
electrical circuits theory-fractances, capacitor 
theory, etc.) [5],[6],[10].  
The generalized fundamental operator which 
includes the differentiation and integration is 
given as [11],[12]: 

 

aD୲
୯

= ൞

ୢ౧

ୢ୲౧                , R(q) > 0

1                  , R(q) = 0  

∫ (dτ)ି୯     , R(q) < 0  
୲

ୟ

                       (1) 

 
where ai and bj are real numbers such that 
 

൜
0 ≤ α଴ ≤ αଵ ≤ ⋯ ≤ α୬

0 ≤ β
଴

≤ β
ଵ

≤ ⋯ ≤ β
୫

  

and s is the Laplace operator. 

3. RATIONAL APPROXIMATIONS TO 
FRACTIONAL INTEGRATORS AND 
DIFFERENTIATORS 

 
A. OUTSTALOUP’S METHOD 

 

   The approximation of Oustaloup a 
generalized derivator, differential action which 
covers the frequency space, based on a 
recursive distribution of an infinite number of 
zeros and negative real poles (to ensure 
phase behavior minimum). As part of a realist 
synthesis (practice) based on a finite number 
of zeros and poles, it should reduce the 
differential behavior of a generalized bounded 
frequency range, chosen according to the 
needs of the application [5],[7],[15].  
The method is based on the function 
approximation from: 
 

H(s) = Sα         , α ∈  Rା                         (2)                      
 
By a rational function [1,3] :  
 

G୤(s) = K ∏
ୱା୵ౡ

′

ୱା୵ౡ
                       (3)  ୒

୩ୀଵ                                          

Where the poles, zeros, and gain are 
evaluated from: 
 

𝑤௞
′ = 𝑤௕ . 𝑤௨

ଶ௞ିଵିఊ
ே    

𝑤௞ = 𝑤௕ . 𝑤௨
(ଶ௞ିଵାఊ)/ே

 , 𝐾 = 𝑤௛
ఊ 

 
Where w୳ is the unity frequencies gain and 
the central frequency of a band of frequencies 
distributed geometrically.  Let  w୳ = ඥw୦wୠ, 
where w୦  and wୠ are respectively the upper 
and lower frequencies. 
 γ is the order of derivative, and N is the order 
of the filter. 

4. NUMERICAL ALGORITHM FOR 
SUB-OPTIMAL RATIONAL 
APPROXIMATIONS 

Our target now is to find an approximate 
integer-order model with a relative low order, 
possibly with a time delay in the following 
form [3],[13],[16]: 
 

 G ୰
୫

,τ
(s)

=
β

ଵ
s୰ + ⋯ + β

୰
s + β

୰ାଵ

s୫ + αଵs୫ିଵ + ⋯ + α୫ିଵs + α୫

eିτ ୱ    (4) 

 
An objective function for minimizing the H2-
norm of the reduction error signal e(t) can be 
defined as: 
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J   ฮG෡(s) − G୰/୫,τ(s)ฮ
ଶ

            θ
ୀ୫୧୬  

 
Where θ is the set of parameters to be 
optimized such that 
 
θ = ൣβ

ଵ
, … , β

୰
, αଵ, … , α୫, τ൧. 

For an easy evaluation of the criterion J, the 
delayed term in the reduced order model 
Gr/m,τ (s) can be further approximated by a 
rational function Gr/m(s) using the Padé 
approximation technique [1],[4]. Thus, the 
revised criterion can then be defined by 

 
J   ฮG෡(s) − G෡୰/୫(s)ฮ

ଶθ
ୀ୫୧୬  

And the H2 norm computation can be 
evaluated recursively using the algorithm in 
[1],[12],[13]. 
Suppose that for a stable transfer function 
type  
 

E(s) = G෡(s) − G෡ ౨

ౣ
(s) =

୆(ୱ)

୅(ୱ)
                                                                        

       
the polynomials Ak(s) and Bk(s) can be 
defined such that 
 
A୩(s) = a଴

୩ + aଵ
୩s + ⋯ + a୩

୩s୩ ,   B୩(s) 
            = b଴

୩ + bଵ
୩s + ⋯ + b୩ିଵ

୩ s୩ିଵ  
 
The values of a୧

୩ିଵ and b୧
୩ିଵ can be evaluated 

recursively from 
 

a୧
୩ିଵ = ቊ

a୧ାଵ                      ୧  ୧୴ୣ୬ 
୩

a୧ାଵ
୩ − α୩ a୧ାଶ

୩  ,   i odd
            

 i = 0, … , k − 1     
   
and  

b୧
୩ିଵ = ቊ

b୧ାଵ                      ୧  ୧୴ୣ୬ 
୩

b୧ାଵ
୩ − β

୩
 a୧ାଶ

୩  ,   i odd
      

       i = 0, … , k − 1     
 
Where α୩ = a଴

୩/aଵ
୩  and    β

୩
= bଵ

୩/aଵ
୩ . 

 
The H2-norm of the approximate reduction 
error signal ê(t) can be evaluated from 

J = ෍
β

୩
ଶ

2α୩

୬

୩ୀଵ

= ෍
(bଵ

୩)ଶ

2 a଴
୩ aଵ

୩

୬

୩ୀଵ

                                          (5)             
 

The sub-optimal H2-norm reduced order 
model for the original high-order fractional-
order model can be obtained using the 
following procedure [1]: 
1. Select an initial reduced model        G෡୰/୫

଴ (s)    

2. Evaluate an error   ฮG෡(s) − G෡୰/୫
଴ (s)ฮ

ଶ
    

from (5).  

3. Use an optimization algorithm (for instance, 
Powell’s algorithm) to iterate one step for a 
better estimated 
 model G෡୰/୫

ଵ  (s).  

4. Set   G෡୰/୫
଴  (s)  G෡୰/୫

ଵ  (s) , go to 
Step 2 until an optimal reduced model 
G෡୰/୫

∗  (s) is obtained. 
5. Extract the delay from G෡୰/୫

∗  (s) , if any. 

5. THE FRACTIONALIZED ORDER 
PID CONTROLLER 

The feedback control loop with an integer 
order controller is shown in figure 1  as [8],: 
 

 

 

 

 

 

Fig. 1 The feedback control loop with an  
integer order controller 

Where, UR(s) : Input Signal  
             E(s) : Error Signal  
             C(s) : Controller Transfer Function  
             G(s) : System or plant Transfer 

Function  
             Y(s) : output Signal U(s) – Controller 

Signal 
 
The integer-order PID controller to be 
designed is in the following form: 
 

C(s) = K୮ ቀ1 +
ଵ

୘౟ୱ
+ Tୢ sቁ                 (6)                      

The PID control scheme is modified here to 
get more robustness against noise and 
perturbation. The new PID control law is 
obtained by using the fractionalization of a 
control system element [14], the integral 
operator 1/s is fractionalized as represented 
in Figure 3 , that is, 
 
 
 
 
 
 
 
 
 
 
             
 

Fig. 2 Fractionalization of integral operator. 
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1

s
=

1

sα

1

s(ଵିα)
 

 
where α is a real number such that 0 < 𝛼 < 1. 
 
The feedback control loop with an 
Fractionalized order controller  is shown in 
figure 3 as: 

 
 
 
 
 
 
 

 
Fig. 3 The feedback control loop with an  

Fractionalized order controller 
 
Where, Cf(s): Fractionalized Controller 
Transfer Function  

          The Fractionalized of the 
integer-order PID controller to be designed is 
in the following form [13],[14]: 
 

C୤(s) = K୮ ൬1 +
1

T୧s
+ Tୢ s൰ 

C୤(s) =
1

s
ቆ

(k୮Tୢ sଶ + k୮T୧s + k୮

T୧

ቇ 

 

C୤(s) =
ଵ

ୱα

ଵ

ୱ(భషα) ቀ
(୩౦୘ౚୱమା୩౦୘౟ୱା୩౦

୘౟
ቁ    (7) 

 
were, 0 < α < 1 

6. SIMULATION RESULTS AND 
DISCUSSION 

 

Let us consider the following FO-LTI plant 
model : 
 

G(s) =
1

sଶ.ଷ + 3.2sଵ.ସ + 2.4s଴.ଽ + 1    
             (8) 

 
Let us first approximate it with Oustaloup’s 
method and then fit it with a fixed model 
structure known as first-order lag plus dead 
time (FOLPD) model [12],[16] , where 

G୰ =
୏

୘ୱାଵ
eି୐ୱ                                                   (9)  

can perform this task and the optimal FOLPD 
model obtained is given as follows: 
  

G୰(s) =
0.9951

3.5014 S + 1
eିଵ.଺ଷସ ୗ                      (10) 

The comparison of the open-loop step 
response is shown in Figure 4. It can be 
observed that the approximation is fairly 
effective. 

 
 
 
Designing a suitable feedback controller for 
the original FO-LTI system G can be a 
formidable task. Now let us consider 
designing an integer-order PID controller for 
the optimally reduced model Gr(s) and let us 
see if the designed controller still works for 
the original system. 
The integer-order PID controller to be 
designed is in the following form [12],[13],[16]: 
 

C(s) = Kp(1 +
1

Tis
+

Tds
Td
N

sା1
)  

The optimum ITAE criterion-based PID tuning 
formula [4] can be used: 
Kp

=
൬0.7303 +

0.5307 T
L ൰ (T + 0.5 L)

K(T + L)
                 (11) 

Ti = T + 0.5 L , Td =
0.5 L T

T + 0.5 L
 

  
The parameters of the PID controller are then 
Kp =3.4160,Ti =3.8164,Td =0.2890, and the 
PID controller can be written as 

C(s) =
1.086s2 + 3.442 s + 0.8951

0.0289 s2 + s
           (12) 

  
The parameters of the Fractionalized PID 
controller are then Kp =3.4160,Ti =3.8164,Td 
=0.2890, α=0.3 and the fractionalized PID 
controller can be written as: 
Cf(s) =
1

sα

1

s(1షα)

(1.086s2ା3.442 sା0.8951)

(0.0289 sା1)
               (13)  

 
                                               

=
1

s0.3

1

s0.7

(1.086s2 + 3.442 s + 0.8951)

(0.0289 s + 1)
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      Finally, the step response of the original 
FO-LTI with the above designed PID 
controller is shown in Figure 3. A satisfactory 
performance can be clearly observed. 
Therefore, we believe the method presented 
can be used for integer-order controller 
design for general FO-LTI systems. 

 
   Figure (6) shows the time response 
characteristics of  the PID and fractionalized 
order PID controllers with random output 
noise of 3 % of the reference signal amplitude 
(α=0.5). 
 

 

  
 
 
 
 
The PID and fractionalized  PID 

controllers with random output noise of 20 % 
of the reference signal amplitude (α=0.5) is 
given in the following figure:  

 

 
 
 
 

7. ROBUSTNESS ANALYSIS 
The evaluation of the control system 
performance will be realized by dening a 
quadratic error criterion J given by,  

 

Jα = න (UR(t) − Y(t))2dt
tF

tI

                          (14) 

 
The Quadratic error criterion with 

random output noise of  3% and 20% are 
given in Table1 and Table 2 respectively: 

 
TABLE 1 - Quadratic error criterion with random 

output noise of  5 % 

α 0.1 0.2 0.3 0.4 0.5 1 

J 0.046 0.05 0.054 0.053 0.058 0.065 

 
Table 2: Quadratic error criterion with random 

output noise of 20% 

α 0.1 0.2 0.3 0.4 0.5 1 

J 0.12 0.14 0.16 0.17 0.15 0.52 

 
We remark that the fractionalized PID give the 
A certain diminution of the noise effect of 
about 50% comparatively to the classical PID 
result  

8. CONCLUSION 
In present work, we propose a new approach 
for PID robust control by introducing fractional 
order filters in the classical feedback control 
loop without changing the overall equivalent 
closed loop transfer function. 
Based on a simple idea to introduce fractional 
order operators in the control system loop, the 
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Fig. 7 The PID and fractionalized  PID controllers with 
random output noise of 20 % of the reference signal 
amplitude (α=0.5). 

Fig. 5 Closed-loop step response of the 
fractionalized PID and the integer-order PID 

controller 

 

Fig. 6 The PID and fractionalized order PID 
controllers with random output noise of 3 % of the 

reference signal amplitude (α=0.5). 
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Fractionalization approach allows to improve 
the noises rejection and the robustness of the 
control scheme. 
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