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Abstract: This paper deals with the fractional order multi-loop controller design for a distillation column. The 
idea is a generalization of the IMC-PID-FOF controller design method developed for monovariable systems to 
the distillation column model which is multivariable. The principle is based on the IMC paradigm and the 
choice of appropriate control configuration with minimum of interactions. The proposed method is illustrated 
with an example of a distillation column model taken from the literature. 
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1. INTRODUCTION 

The distillation is undoubtedly the most 
important separation method in the chemical 
process industries with 95% of the separation 
work is carried out by distillation and these 
units consume 3% of the total energy 
produced in the world [1]. From the point of 
view analysis and control, the distillation 
column is considered as a strongly nonlinear 
and very interactive multivariable system and 
generally with very high order system [2]. 
Therefore, the distillation column is still an 
attractive research subject for the 
researchers and control engineers for testing 
and validating their proposed controller 
design methods [3-5]. The elaboration of 
linear dynamic model for the distillation 
column is an important part in the control 
system synthesis; it can be obtained using 
the system identification which allows 
avoiding a complicated and expensive 
nonlinear model. However the time constants 
of the compositions dynamics are large and a 
recording of input / output data for the real 
plant is very time consuming. Moreover, each 
experiment causes undesired disturbances of 
the product qualities and it is practically 
impossible to obtain models for the entire 
operating range of the distillation column [6]. 
These disadvantages lead to the 
recommendation of the second method that 
means the linearization of the non linear 
model [7].  

During the last decades, the Fractional Order 

Control (FOC) knows a growing interest in 
the control system theory field, the early 
research works are carried out by Podlubny 
[8] where he introduced the notion of FO-PID 
controller and Oustaloup [9] where he 
introduced the notion of CRONE control (the 
French acronym which means non-integer 
order robust control). In [10], an IMC-PID-
FOF controller is proposed for monovariable 
systems. The principle is based on the 
Internal Model Control (IMC) paradigm which 
exhibits interesting properties such as 
robustness to modeling error. Moreover, the 
controller design method is very simple with 
few parameters to tune [11]. Other research 
works are dealing with fractional order 
controllers design for multivariable systems 
such as [12-16].  

This paper presents a generalization of IMC-
PID-FOF controller design method developed 
for monovariable systems [10] to distillation 
column models which are multivariable 
systems. This proposed method is also a 
generalization of the IMC-PID multi-loop 
controller design method introduced by 
Economou and Morari [17] to the case when 
the reference model is of fractional order; it is 
based on the equivalence between the IMC 
and conventional multi-loop structures. The 
design method consists of the stability 
analysis of the closed loop multi-loop 
structure [18] and the interactions analysis to 
select the appropriate pairing with a weak 
level of interactions [19]. Then, an 
independent IMC-PID-FOF controller is 
determined for each control loop. The 
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fractional property of the controller is 
imposed by the closed loop Bode's ideal 
transfer function chosen as reference model 
for each loop. The rest of the paper is 
organized as follows: Section (2) deals with 
some definitions relative to the distillation 
column in terms of modeling and control. The 
proposed design method is presented in 
Section (3) which is illustrated with an 
example of distillation column model in 
Section (4). A conclusion of the study is given 
in Section (5). 

2. DESCRIPTION AND MODELING 
OF THE DISTILLATION COLUMN 

A typical two-product distillation column is 
shown in Fig. 1. It contains a vertical column 
where trays are used to enhance the 
component separations, a re-boiler to provide 
heat for the necessary vaporization from the 
bottom of the column, a condenser to cool 
and condense the vapor from the top of the 
column, and a reflux drum to hold the 
condensed vapor so that liquid reflux can be 
recycled back from the top of the column. 
The feed product to be split is given by F, the 
feed rate [kmol/min], and 𝑍௙ its composition 
[mole fraction]. The resulting products to be 
extracted from the top and bottom of the 
column are given respectively by D and B 
which are respectively the distillate and the 
bottom products flow rate [kmol/min]. 𝑥஽ and 
𝑥஻ are respectively distillate and bottom 
products composition which refers usually to 
the amount of light component [mole fraction] 
in distillate and bottom product respectively. 
L and V represent respectively the reflux and 
voilup flows [kmol/min]. 𝑀஻ and 𝑀஽ represent 
respectively the liquid holdup in the re-boiler 
and the condenser. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Binary distillation column controlled with LV-
configuration. 

The principle of the separation is based on 
the differences in the boiling points of the 
components in the feed product, in such a 
way that the more volatile component rises at 
the top of the column and the less volatile 
component goes down at the bottom [2]. 
The relative volatility is a measure of the 
differences in volatility between two 
components and hence their boiling points, it 
indicates how easy or difficult a particular 
separation will be, the relative volatility of the 
component i with respect to component j is 
defined as [6]  

𝛼௜௝ =
൤

೤೔
ೣ೔

൨

ቈ
೤ೕ

ೣೕ
቉

=
௞೔

௞ೕ
                                    (1) 

𝑦௜ is the mole fraction of component i in the 
vapor phase and 𝑥௜ is the mole fraction of 
component i in the liquid  phase. 
The mathematical model of the distillation 
column involves the equations of the energy 
and material balances in each tray, the model 
of the liquid flow dynamics (changes in the 
liquid holdups) and the model of the pressure 
dynamics. It may also include detailed model 
of the reboiler and the condenser. The 
resulting model is thus called rigorous and 
highly nonlinear and generally with very high 
order. However, in this rigorous model a 
number of simplifications are included such 
the perfect mixing in both phases on all 
stages, thermal and thermodynamic 
equilibrium between the phases. 
To simplify moreover this model a number of 
assumptions are considered [6]: 

1- The relative volatility 𝛼 is constant 
throughout the column; this means that 
vapor equilibrium relationship can be 
expressed as 

𝑦௡ =
ఈ ௫೙

ଵା(ఈିଵ)௫೙
                             (2) 

 𝑥௡ and 𝑦௡ are respectively liquid and vapor 
composition on the 𝑛௧௛ tray. 

2- The overhead vapor is totally condensed 
in the condenser 

3-  The liquid holdups on each tray, 
condenser and the re-boiler are constant 

4- The vapor holdup is negligible throughout 
the system 

5- The molar flow rates of the vapor and 
liquid through the stripping and rectifying 
sections are constant 

Due to the Vapor Liquid Equilibrium (VLE) 
relationship given in Equation (2), the 
distillation column model is still non linear 
and may be of high order. Thus the methods 
of linearization and reduction model can be 
used [2]. 
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Two-product distillation column has five 
degrees of freedom with five manipulated 
variables U = ( L, V, 𝑉 , D, B) and five 
controlled outputs Y = (𝑥஽ , 𝑥஻ , 𝑀஽, 𝑀஻, P). 
Many studies have shown that the process 
has poles in or close to the origin and needs 
to be stabilized and for high purity distillation, 
the system is strongly interactive. For this, 
the distillation column is first stabilized by 
closing three decentralized loops for levels 
and pressure involving the outputs: 𝑌ଶ = (𝑀஽, 
𝑀஻, P). These three SISO loops are usually 
interact weakly and may be tuned 
independently of each other; the remaining 
outputs are then the product composition: 𝑌ଵ 
= (𝑥஽, 𝑥஻).  
There exist many possible choices for 𝑈ଶ to 
control 𝑌ଶ and thus for 𝑈ଵ to control 𝑌ଵ. Par 
convention, each configuration is named by 
the inputs 𝑈ଵleft for the composition control 
such as: 
 LV configuration: 𝑈ଵ = (𝐿 𝑉)் and 𝑈ଶ = 

(𝐷 𝐵 𝑉 )்   
 DV configuration: 𝑈ଵ = (𝐷 𝑉)் and 𝑈ଶ = 

(𝐿 𝐵 𝑉 )்   
 

3. IMC-PID-FOF MULTI-LOOP 
CONTROLLER FOR DISTILLATION 
COLUMN MODEL 

The IMC multi-loop control scheme [17] is 
generalized to the fractional order case 
whose fractional order model is chosen.  
In the frequency domain, most distillation 
column processes are modeled by transfer 
function matrices. 
We assume that a distillation column is 
represented by a transfer function matrix with 
n inputs and n outputs 

𝐺(𝑠) = ൭

𝑔ଵଵ ⋯ 𝑔ଵ௡

⋮ ⋱ ⋮
𝑔௡ଵ ⋯ 𝑔௡௡

൱                            (3) 

 
The IMC and conventional multi-loop control 
schemes are shown in Fig. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig.2 IMC and conventional multi-loop 
structures 
 
The IMC-PID-FOF multi-loop controller 
consists of:  
 Step1 : Stability and interactions 

analysis  
      To verify the stability of the closed loop 

response of the distillation column when a 
muti-loop control scheme is implemented, 
the Niederlinski Index NI is used [18]. 

 

NI =
ୢୣ୲ [ீ(଴)]

∏ ௚೔೔(଴)೙
೔సభ

                                       (4) 

𝐺(0) = lim
௦→଴

𝑔௜௜(𝑠) 

  If NI > 0; the controlled distillation process 
will be stable. 

 If NI < 0; the controlled distillation process 
will be unstable. 

The Relative Gain Array (RGA) measure is 
used to select the adequate pairing with 
least of interactions [19], it is given by 

𝑅𝐺𝐴൫𝐺(0)൯ = 𝐺(0) ⊗ (𝐺(0)ିଵ)்          (5) 

Where ⊗ denotes the Hadamard product 
and the superscript T designates the 
transpose of a matrix. 
For the sake of simplicity, a control 
configuration that assigns each input 𝑢௜ to 
output 𝑦௜ is assumed for i=1…. n, the process 
model is 
 

𝐺௠(𝑠) = ൭
𝑔ଵଵ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑔௡௡

൱                 (6) 

 
In Equation (6), the interaction elements are 
dropped and are considered as modelling 
errors [16]. The multivariable process is thus 
considered as a set of monovariable 
subsystems (loops) and monovariable 
controller is designed for each loop 
independently from others.  
 
 Step 2 : IMC multi-loop controller 

synthesis 
  The IMC multiloop controller is given by  

 

(a) 

(b) 
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𝐺௖(𝑠) = 𝑑𝑖𝑎𝑔[𝑔௖ଵ(𝑠), 𝑔௖ଶ(𝑠) … … . . 𝑔௖௡(𝑠)]    (7) 
In order to calculate each controller 𝑔௖௜(𝑠), 
i=1,...,n, the corresponding element in the 
process model is first factorized as 
𝑔௜௜(𝑠) = 𝑔௜௜

ି(𝑠)𝑔௜௜
ା(𝑠)                               (8) 

The controller is then given by 

𝑔௖௜(𝑠) =
ଵ

௚೔೔
ష(௦)

 𝑓௜(𝑠),   i=1,…….n.            (9) 

A fractional behavior is imposed for each 
loop and 𝑓௜(𝑠) is given by the closed loop 
bode’s ideal transfer function 

𝑓௜(𝑠) =
ଵ

ଵାఛ೎೔௦ഀ೔శభ  0<𝛼௜<1; i=1,…n         (10) 

This function exhibits interesting properties: 
the infinite gain margin and the constant 
phase margin: 𝜑௠ = 𝜋(1 −

ఈ೔

ଶ
) dependent 

only on 𝛼௜. The time constant 𝜏௖௜ determines 
the settling time of the step response and the 
order 𝛼௜ determines the overshoot. 
Therefore, the system is robust to process 
gain variations and step response exhibits 
iso-damping property. 
 Step 3 : conventional multi-loop 

controller design 
The classical multi-loop controller to be 
implemented is 
𝐶(𝑠) = 𝑑𝑖𝑎𝑔[𝑐ଵ(𝑠), 𝑐ଶ(𝑠), … … , 𝑐௡(𝑠)]      (11) 
The equivalence between the two structures 
of Fig. 2 gives each element of 𝑐௜(𝑠) as 

𝑐௜(𝑠) =
௚೎೔(௦)

ଵି௚೎೔(௦) ௚೔೔(௦)
 ,  i=1…..n                (12) 

 
4. Simulation results 

To illustrate the controller design method for 
distillation column models, We consider a 
cryogenic Carbon isotope separation column 
model. The Carbon isotopes separation 
process is based on the distillation of Carbon 
monoxide which has different boiling 
temperatures depending on the Carbon 
isotopes it contains. 
A three input-three output system is identified 
where the inputs variables are: the output 
waste flow from the column, the input feed 
flow to the column and the electrical power 
supplied to the boiler resistor. The outputs 
variables are: the pressure in the column at 
the condenser zone, the liquid Carbon 
monoxide level in the boiler and the pressure 
at the boiler zone [13, 20]. 

𝐺(𝑠) = ൭
௚భభ௘షభబೞ      ௚భమ௘షభబೞ        ଴ 

௚మభ௘షభబೞ        ௚మమ௘షఴೞ          ௚మయ

௚యభ௘షభఴೞ       ௚యమ௘షయఱೞ        ௚యయ

൱     (13) 

With: 

𝑔ଵଵ =
−0.1111

𝑠ଶ + 1.0945𝑠 + 0.08423
 

𝑔ଵଶ =
0.1152

𝑠ଶ + 1.211𝑠 + 0.2021
 

𝑔ଶଵ =
−0.001731

𝑠ଶ + 0.1343𝑠 + 0.001961
 

𝑔ଶଶ =
0.003846

𝑠ଶ + 0.1547𝑠 + 0.004357
 

𝑔ଶଷ =
ିଵ.ଵ଴ସ

௦ା଴.ଵଵ଻଺
 ;     𝑔ଷଷ =

଼.ସହ଻

௦ା଴.ଽ଼ହଵ
 

𝑔ଷଵ =
−0.009918

𝑠ଶ + 1.056𝑠 + 0.07036
 

𝑔ଷଶ =
0.006288

𝑠ଶ + 1.085𝑠 + 0.09851
 

According to Equation (4), the corresponding 
Niederlinski Index is: NI=0.5715 and using 
Equation (5), the corresponding RGA matrix 
is: 

𝑅𝐺𝐴 = ൭
 1.8883 − 0.8883              0

−0.7562       1.7499       0.0063
−0.1321      0.1384      0.9937

൱ (14) 

This positive value of NI shows that the 
distillation column will be stable when multi-
loop control scheme is implemented and the 
RGA matrix given by Equation (14) shows 
that the diagonal pairing is appropriate to 
control the distillation column: 𝑦௜ is paired 
with 𝑢௜ ; i=1,2,3. Consequently, the process 
model without interactions that will be used in 
the controller design method is 

𝐺௠(𝑠) = ቆ
௚భభ௘షభబೞ      ଴                ଴ 

଴                  ௚మమ௘షఴೞ      ଴
   ଴                   ଴               ௚యయ

ቇ                    (15) 

In Equation (15), the off-diagonal elements 
are dropped and considered as modelling 
errors. 
The transfer functions 𝑔ଵଵand 𝑔ଶଶare of 
second order; in order to simplify the 
fractional order multi-loop controller design 
method, 𝑔ଵଵand 𝑔ଶଶare identified as first 
order models 

𝑔ଵଵ𝑒ିଵ଴௦ ≈ 𝑔෤ଵଵ =
ିଵ.ଷଵଽ௘షభబ.ఱೞ 

ଵାଵଶ.ସ௦
                (16) 

𝑔ଶଶ𝑒ି଼௦ ≈ 𝑔෤ଶଶ =
଴.଼଼ଶ଻௘షభయ.యೞ 

ଵାଷ଴௦
                  (17) 

The step responses of 𝑔ଵଵ; 𝑔ଶଶ and their 
approximates 𝑔෤ଵଵ ;  𝑔෤ଶଶ respectively are given 
in Fig.3. 
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Fig.3 Step responses of 𝒈𝟏𝟏and 𝒈෥𝟏𝟏, 𝒈𝟐𝟐 and 𝒈෥𝟐𝟐 

We see, from Fig.3, that the temporal 
behaviour of 𝒈𝟏𝟏; 𝒈෥𝟏𝟏 and 𝒈𝟐𝟐; 𝒈෥𝟐𝟐 
respectively is very close. This confirmed by 
the small maximum error value between 
𝒈𝟏𝟏and 𝒈෥𝟏𝟏: 0.0356 and that between 𝒈𝟐𝟐and 
𝒈෥𝟐𝟐 : 0.0339. 

The IMC-PID-FOF multi-loop controller is 
designed according to the steps described in 
Section (3) using the following process model 

𝑮𝒎(𝒔) = ቆ
𝒈෥𝟏𝟏      𝟎     𝟎
𝟎        𝒈෥𝟐𝟐    𝟎
𝟎      𝟎       𝒈𝟑𝟑

ቇ                      (18) 

The performance of the proposed IMC-PID-
FO multi-loop controller is compared to the 
fractional order multi-loop controller proposed 
in [13]. The parameters values of the 
reference model 𝑓௜(𝑠), i=1,2,3 are listed in 
Table 1. 
 
Table 1 Parameters of the reference model  

Loop i 𝑓௜(𝑠) 
𝜏௖௜ 𝛼௜ 

1 
2 
3 

135.6457 
81.682 
0.4749 

0.2222 
0.2556 
0.2667 

These values are chosen to meet the same 
specifications for each loop as given in [13] 
According to Equations (7) to (12), the 
numerical expression of the IMC-PID-FOF 
multi-loop controller is 

𝑪(𝒔) = ቆ
𝑪𝟏(𝒔)      𝟎     𝟎
𝟎        𝑪𝟐(𝒔)    𝟎

𝟎      𝟎       𝑪𝟑(𝒔)

ቇ                        (19) 

With:  

𝐶ଵ(𝑠) =
−0.8953

1 + 12.9186 s଴.ଶଶଶଶ
(1 +

1

12.9186s
) 

𝐶ଶ(𝑠) =
2.5554

1 + 6.1415 s଴.ଶହହ଺
(1 +

1

30s
) 

𝐶ଷ(𝑠) =
0.249

 s଴.ଶ଺଺଻
(1 +

1

1.0151s
) 

The fractional order integrals and derivatives 
terms are implemented in Matlab using the 
Oustaloup's continuous approximation 
method with frequency range [10ିହ, 10ାଶ] 
using 15 cells.  
To illustrate the effect of interactions among 
the control loops, sequential set-point 
changes are made in the first and second 
loops when proposed and auto-tuning 
controllers are implemented and the obtained 
results are given in Fig. 4 and Fig. 5. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Closed loop responses to sequential 
changes in the first and second set-points 
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Fig. 5 Control effort to sequential changes in 
the first and second set-points 

The simulations results of Fig. 4 show that 
both controllers ensure set-point tracking with 
close behaviour of the two responses with a 
superiority of the proposed controller 
concerning the reduction of effect of 
interactions in the first and third loops. 
However, the interactions are more reduced 
for second loop when auto-tuning controller is 
implemented. On the other hand, the value of 
Integral Absolute Error (IAE), obtained for 
each loop, show the superiority of the auto-
tuning controller for the first and second loop 
as given in Table 2. The IAE value for the 
third loop is smaller when proposed controller 
is implemented. 

Table 2 Integral Absolute Error (IAE) for each 
loop 

 proposed 
controller 

Auto-tuning 
controller 

IAE1 1450 1264 
IAE2 996.1 664 
IAE3 0.4448 1.342 

The obtained results of Fig. 5 show that the 
control effort provided by the two controllers 
is acceptable. 
 
Simulation results of Fig.6 and  Fig. 7 show 
the closed loop responses with ±50% of all 
gains when proposed and auto-tuning 
controllers are implemented respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig.6 Closed-loop responses with ±50% 
variation on all process model gains when 
IMC-PID fractional multi-loop controller is 
implemented 
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Fig.7: Closed-loop responses with ±50% 
variation on all process model gains when auto-
tuning fractional multi-loop controller is 
implemented 

We see from the simulation results of Fig.6 and  
Fig.7 that both controllers are robust to process 
gain variations. 

5. CONCLUSION 

In this paper, an IMC-PID-FOF multi-loop 
controller is designed for distillation column 
model which is a multivariable and highly 
interactive model. The controller design 
method is very simple with few parameters to 
tune fractional order 𝛼௜ and time constant 𝜏௖௜ 

The simulation results obtained, when 
proposed controller is compared to another 

fractional order controller, show that the IMC-
PID-FOF multi-loop controller ensures set-
point tracking and exhibits robustness to 
process gain variations. Future works will deal 
with reducing the effect of interactions among 
the control loops in distillation column and 
optimize the choice of the parameters 𝛼௜ and 
𝜏௖௜ ; the proposed controller will designed to 
control the top and bottom products purity in 
the distillation columns.  
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