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Abstract: This paper concerns the stability conditions and controller design for sampled-data networked 
control systems (NCSs) model subject to network communication delays, the main objective is to guaranty the 
maximum allowable upper bounds of network-induced time varying delays that keep the NCSs stable. First, 
Lyapunov-Krasovskii functional with simple and double-integral terms is constructed considering both upper 
and lower bounds of network delay. Then, less conservative Linear Matrix Inequalities (LMIs) stability 
conditions are established using null terms to introduce free weighting matrices based on the Leibniz-Newton 
formula. Furthermore, Finsler's lemma is used for the relaxation of the obtained LMI's stability conditions using 
slack decision variables. It is also used to decouple Lyapunov-Krasovskii matrices from the system ones. The 
application of the proposed approach for different NCSs gives higher upper delay bounds compared with other 
methods. 
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1. INTRODUCTION 
The NCSs are decentralized systems where 
the control loop components (sensors, 
actuators, and controllers) are closed through 
single digital communication network 
channel. In recent years, NCSs has received 
considerable attention due to their many 
benefits in terms of cost, weight, installation 
and maintenance [6] over point to point wired 
conventional feedback control systems. In 
addition, due to the benefits of control over 
communication network and the development 
of the network access technologies, NCSs 
are much more employed in many real 
control systems such Wide area plant 
automation, intelligent transportation 
systems, remote surgery, robotics [4], 
distributed power systems and smart grids 
[1]. This led industrial societies and 
researchers to a growing interest in this 
field.However, due to the challenges created 
by the digital communication channel such, 
network-induced delays and packet losses, 
the system control performance may degrade 
and even lead to closed-loop instability [18]. 
Actually, many researchers in this field have 
made great progress to address the stability 
of NCS, wherein the main issue is to 
minimize the conservatism of the asymptotic  
stability criterion and guarantying at the same 
time maximum allowable delay 

bound(MADB) for NCSs. Among the most 
effective interesting methods to relax the 
stability conditions, free-weighting matrices 
are considered in[5],Delay-partitioning 
approach [8], relaxation matrices method[7], 
Wirtinger based 
Inequalitiesin[2].Morerecently,NCSs with 
stochastic time-varying network-induced 
delays are considered in [11,3] and event-
triggered control has been considered to 
reduce sensors network resource 
consumption as power and network 
bandwidth in [12,14]. 
In this paper, we present a new study on the 
stability analysis and stabilization method for 
NCSs with a network-induced delay. To this 
end, Lyapunov-Krasovskii functional is used 
to get the information of the effect of 
networked delay on the system. The resulting 
cross terms are estimated using novel 
integral inequalities and free weighting 
matrices based on the Leibniz-Newton 
formula are introduced using null terms. 
Furthermore, in order to minimize the 
conservatism, Finsler's lemma is used to 
relax the LMI's stability conditions by adding 
slack decision variables. The resolution of the 
obtained LMI-based stability conditions allow 
us not only to obtain a maximum allowable 
upper network-induced delay bound by also 
derive robust state feedback controller gains. 
In order to demonstrate the feasibility of the 
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proposed method, we provide two numerical 
examples representing linear system 
controlled over network. Finally, a 
comparison with others methods in terms of 
conservativeness and effectiveness is given. 
 

Notations: In the text,* in matrices denote 
bloc transpose quantities. For a matrix 𝑀 
of appropriate dimention, one denotes .

( ) T
e M M M H .A finite set of r positive 

integers is denoted  {1,..., }rI r also, ∀𝑗 ∈

 𝐼5, the block entry matrices is expressed 

by 5
( 1) (5 )0 0

T n n
j n j n n n n n j ne I 

         for 

example:  4 0 0 0 0 .
T

e I  

2. System Model Description 
 
Let consider the following NCS model 
 

 

 
  



1

( ) ( ) ( )
(1)

(0) ( ) [, , )k k

x t Ax t Bu t

x t t t h t h
 

 
Where ( ) nx t  state and ( ) mu t  control 

vectors respectively A and B are constant 
matrices with appropriate dimensions ( )t  is 

the given function of initial conditions of the 
systems on the interval of time  1[ , )k kt t h t h  

where the sampling period is ℎ. The following 
assumptions are adopted. 
 
Assumption1: The zero-order holder (ZOH), 
the controller and the actuator are event-
driven, whereasthe sensor is clock-driven 
with a fixed sampling periodℎ. 
 
Assumption2: Assume that all the state 
variables are available and transmitted to the 
controller through the network in single-
packets. The sampling instants set of state 
variables are denoted as  1 2, , , kt h t h t h . 

The sampling instants are transmitted throw 
a digital network. During the transmission 
process, there are two kinds of delays 
sensor-to-controller delay

ksc andcontroller-

to-actuator delay
kca . 

The tow delays in this structure can be 
grouped together as

k kk sc ca    .Therefore, 

the ZOH updating instants are denoted by

 1 1 2 2, , , k kt h t h t h      . 

Each control signal is maintained by ZOH 
and is only valid over time interval

 1 1 2 2, , , k kt h t h t h       

Assumption3: The network-induced delay 
k is bounded,and satisfies     0 m k M

where m and M are constants, the 𝑍𝑂𝐻 

keeps the control signal through the interval 

    1 1 2 2, , , k kt h t h t h   until the arrival of 

a new signalat {k+1}t h . 

Based on the previous assumptions, the 
state feedback control law can be described 
as: 
 

 1 1( ) ( ), , (2)k k n k nu t Kx t h t t h t h       

 
Where 𝐾 is the state feedback matrix gain. 
 
Let us defining: 
 

 1 1( ) , , (3)k k k k nt t t h t t h t h       
 

 
Therefore, the control law 𝑢 can be rewritten 
as: 
 

 1 1( ) ( ( )), , (4)k h k ku t Kx t t t t h t h       
 

 
According to the previous assumptions, the 
network-induced delay can be described as: 
 

          


   
1 10 ( ) , ,

(5)
( ) 1, ( )

m k M k k k k

k k

t t t h t t h t h

t t t h

    
 

 
 
Substituting the state feedback controller 
into, we obtain the closed-loop dynamics as: 
 

  

  
    



1 1

( ) ( ) ( ( )),
(6)

( ) ( ), , .k k k k

x t Ax t BKx t t

x t t t t h t h


  

 
 
Based on Lyapunov-Krasovskii Functional, 
our idea is to suggest LMI's conditions to 
study the stability and stabilization of NCS 
described in. To achieve this goal, some 
lemmas are useful: 
 
Lemma1[13]: For any constant matrix scalars

 1 2( )t    and vector function 

  
2 1: [ , ] nx    such that the following 

integration is well defined, the following 
inequality holds: 

1

2
2 1

1 1

2 2

1 1

2 2

( ) ( ) ( )

( ( ) ( ( )) ( ( ) ( ( ))

( ( ( ) ( )) ( ( ( ) ( ))

( ( ) ( ( )) ( ( ( ( ))

( ( ( )) ( )) ( (

(7 )

( ) ( ))

t T

t

T

T

T

T

x s Q x s ds

x t x t t Q x t x t t

x t t x t Q x t t x t

x t x t t Q x t x t t

x t t x t Q x t t x t




 

   
   

    
    




  

      
      
      
      

  

 
   

 
   
 

 
 

2 1

2 1 2 1

( ( )) ( ( ) )
:    

t t
W here and
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Lemma2 [15]: Let  ,n m nR G   and 

𝑄 =  𝑄𝑇 ∈ 𝑅𝑛 × 𝑛 such that rank(𝐺)  < 𝑛. 
The following statements are equivalent: 
 

0, { : 0, 0} (8)

: ( ) 0 (9)

     

   

     


T n

n m
e

Q G

R Q H RG
 

 
Lemma3[17]: Let 𝜑1, 𝜑2 and Ω constant 
matrices of appropriate dimensions, and

 1 2( )t    then the inequality 

 

1 1 2 2( ( ) ) ( ( )) 0 (10)         t t  

Hold if and only if: 

2 1 1 2 1 2( ) 0 and ( ) 0 (11)           
 

3.  Main results 
 
In the following, a new NCSs stability criteria 
based on an appropriate LKF will be 
developed. For the convenience of narration, 
we define 

1 m  and 
2 .M h    

 
3.1. Stability analysis for NCS 
 
Let us first focus on the stability analysis of 
NCS, our result is proposed in the following 
theorem 
 
Theorem 1: Let  2i I and  3j I . For given 

scalars 0i  suchthat 1 2( )t    and 

feedback controller gain matrix𝐾, the NCS 
model (6) with network-induced delay (3) is 
GASif there exist symmetric positive definite 
matrices , , ,iP S Q ( )n n

jR in and variables 1N

and 
2 ( )n ninN  and real matrix 5( )n ninT 

such that the following LMIsconditions hold 
for both  1 q and   2 :q  
 

 


 
       

    


3

2 1
1

2 1

(
)1

)
0

* ( )

( 2
q q

i e
i

H TG N

S

 

 

 

 
Where 
 

 0 0 (13) G A BK I  

1 1 5 1 1 2 1 2 1 2 4 2 4

(14)

( ) ( )     T T T T
eH e Pe e Q Q e e Qe e Q e

2 2 1 5 1 5 (15) )( Te S e     

    1 2
3 3 4 2 3 (16)    T T

eH N e e N e e  

 
With 

 
 1 2 2 2

5 1 1 2 2 2 1 3 5 1 2 1 1 2

2 3 2 2 3 3 4 2 3 4 3 4 2 3 4

1
1 3 3 1 3 1 3 3 1 3 3 4 3 3 4

2

2 1
3 4 3 3 4

2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

(17)

T T

T T T

T T T

T

e R R R e e e R e e

e e R e e e e R e e e e R e e

e e R e e e e R e e e e R e e

e e R e e

   



 


       

        

        


  

 2 2 2 2
5 1 1 2 2 2 1 3 5 1 2 1 1 2

2 3 2 2 3 3 4 2 3 4 1 3 3 1 3

3 4 3 3 4 2 3 2 2 3 1 3 3 1 3

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) (18)

( ) ( ) ( ) ( ) ( ) ( ) .

T T

T T T

T T T

e R R R e e e R e e

e e R e e e e R e e e e R e e

e e R e e e e R e e e e R e e

          

        

        

 
Proof1: Consider the following LKF 
candidate: 

1 2 3( ) ( ) ( ) ( ) (19)  V t V t V t V t  

1

2

1 1

2

( ) ( ) ( ) ( ) ( ) ( ) (20)

( ) ( )

tT T

t

t T

t

V t x t t Px t x s Q x s ds

x s Q x s ds









 






 

1

2

1

2

0

2 1 1

0

2 2

2 1 3

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) (21)

t T

t s

t T

t s

t T

t s

V t x s R x s dsdv

x s R x s dsdv

x s R x s dsdv













 

 

 



 





 

 

 

 

 

 

 

 
1

2
3( ) ( ) ( ) (22)

t T

t s
V t x s Sx s dsdv







 
    

 
The LKF candidate is positive if the given 
matrices  

1 2 3 1 2, , , , ,P R R R Q Q andS are positive definite 

matrices. Then, the Networked control 
system with network-induced delay is GAS if: 
 

      
1 2 3( ) ( ) ( ) ( ) 0 (23)V t V t V t V t

 
Let us first focus on  1  V t from (20) one has: 

 

       
  

     

 

 
1 1 2

1 1 1 2 2 2

1

( ) ( ( ) ( )) ( )( ) ( )

( ) ( ) (24)

T T
e

T T

T

V t H x t Px t x t Q Q x t

x t Q x t x t Q x t

t t

   

 
 
 With 1  given in (14) and 

1

2

( ) ( ) ( ) ( ( ))

( ) ( ) (25)

  



  

 

T T T

TT T

t x t x t x t t

x t x t

Now, let us focus on the time derivative of 
(21), one has: 
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 

 





   

 

 

 



  

   

 

1 2

1

2

2 2 2
2 1 1 2 2 2 1 2

1 1 2 2

2 1 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) (26)

T

t tT T

t t

t T

t

V t x t R R R x t

x s R x s ds x s R x s ds

x s R x s ds

 





   

 

 

 
Applying lemma1, it yields: 
 

   

   


    

    

  
1

1 1 1 2 1 1 2

1 2 5 1 1 2 5

(
)(27

) ( )

2 2

t TT

t

T

x s R x s ds e e R e e

e e e R e e e




1

2
2 1 2

1 2 1

2 2 2

1 1 2 1

1 2 2 2

( ) ( ) ( )

( ( ) ( ( )) ( ( ) ( ( )))

( ( ( ) ( )) ( ( ( )) ( ))

( ( ) ( ( )) ( ( ) ( ( )))

( ( ( )) ( )) ( ( ( )) ( ))

t T

t

T

T

T

x s R x s ds

x t x t t R x t x t t

x t t x t R x t t x t

x t x t t R x t x t t

x t t x t R x t t x t




 

   
   

    
    




 

      
      
      
      

  

(28)

T

 



 

   
   

    
    




 

      
      
      
      

  1

2
2 1 2

1 2 1

2 2 2

1 1 2 1

1 2 2 2

( ) ( ) ( )

( ( ) ( ( )) ( ( ) ( ( )))

( ( ( ) ( )) ( ( ( )) ( ))

( ( ) ( ( )) ( ( ) ( ( )))

( ( ( )) ( )) ( ( ( )) ( ))

t T

t

T

T

T

x s R x s ds

x t x t t R x t x t t

x t t x t R x t t x t

x t x t t R x t x t t

x t t x t R x t t x t T

2 1
1 1

2 1 2 1

( ) ( ( ) )t t
Where and

   
 

   
 

 
 

 

 

2
2 3

3

2 3 2

2 3

2 2 3 2

( ) ( )

( ( ) ( ( )) ( ( ) ( ( )))

( ( ( ) ( )) ( ( ( ) ( ))

( ( ) ( ( )) ( ( ) ( ( )))

( ( ( )) ( )) ( ( ( )) ( )

(

)

29)

t T

t

T

T

T

T

x s R x s ds

x t x t t R x t x t t

x t t x t R x t t x t

x t x t t R x t x t t

x t t x t R x t t x t




 
   

  
    


 

    
      

    
      

  

 
2

2 2
2 2

( ) ( )
W h e re


 
   

 
t t

a n d  

Therefore, from (28), (29), we can major (26) 
as 
 

  
2 ( ) ( ) ( ), 1,2 (30)T qV t t t q 

 
 

Withq given in (17) and(18) respectively. 
Now, let us focus on the third term of (19), we 
have 
 

2

2
3 2 1( ) ( ) ( ) ( ) ( ) ( ) (31)




 




       

tT T

t
V t x s Sx s x s Sx s ds

 
Let us come back to the whole derivative of 
the LKFs (19).From (24) - (31), the inequality 
(23) is satisfied if 
 

1

2

2

1

( ) ( ) ( ) ( ) 0(32)



 






 
    

 
   

tT q T
i t

i

t t x s Sx s ds

 
With

2  given in (15). 

Note that, from the well-known additive 
property of integration on intervals, we can 
write: 
 

1

2 2

1

( )

( )

( ) ( ) ( ) ( ) (33)

( ) ( )

 

 





  



 



   

 

 

 





t t t

t t

t

t t

x s Sx s ds x s Sx s ds

x s Sx s ds

 

As well as introduce the following null terms: 
 

2

( )

2( ( )) ( ) ( ) 0 (34)



 




     

t t

t
x t t x t x s ds  

1

1 ( )
( ) ( ( )) ( ) 0 (35)




     




 

t

t t
x t x t t x s ds  

Note that the following inequalities hold 
 

1

1

1

( )

1 1 1
1

( )

2 ( ) ( )

( ( ) ) ( ) ( )

( )

( )

(

6

)

3

tT

t t

T T

t T

t t

t x s ds

t t N S N t

x s S

N

x s ds











   













 









 

 

 












 









 

2

2

( )2

2 1 2
2

( )

(37)

2 ( ) ( )

( ( )) ( ) ( )

( ) ( )

t tT

t

T T

t t T

t

t N x s ds

t t N S N t

x s Sx s ds











     

Thus, from (36) and (37) the inequality (32), 
is satisfied if: 










    



  


3

1 1 1
1

1

2 1 2
2

( ) ( ( ) )

( ( )) ( ) 0 (38)

T q T
i

i

T

t t N S N

t N S N t

  

  

With
3 given in (16).Then, with 𝐺 defined in 

(13), let us rewrite the NCS model(6) with 
network-induce delay (3) as: 
 

( ) 0 (39)G t  
The lemma 2 can be applied if there exists T 
in ( 5 )n n such that 

 

  ( ) ( ) 0 (40)T
et H TG t 

 
 

Now, let consider the whole derivative of the 
LKF (23)-(40), the inequality (23) is satisfied 
if: 
 

 










     



  


3

1 1 1
1

0

2 1 2
2 1

( ) ( ( ) )

( ) ( ) 0 (41)

T q T
i e

i

T

t H TG t N S N

N S N t

  

  
 

 
Applying lemma 3, it yields for q = 1,2: 
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  



 
      

 


3
1

2 1
0

( ) ( ) ( ) 0

(42)

T q q qT
i e

i

t H TG N S N t   

 
Now, applying Schur complement the LMI 
(42) is equivalent to (12). This completes the 
proof. 
 
3.2.Controller design for NCS 
 
In this section, when the feedback gain K is 
unknown, theconditions expressed in 
theorem1are no more LMIs. The following 
theorem provides a convexification procedure 
for the design of networked controller (4) 
such that the closed loop NCS (6) is 
stabilized. 
 
Theorem.2.Let  2i I and  3j I for given 

scalars 0i  such that 1 2( )t    , the 

NCS model (6) is asymptotically stabilized by 
the NCS controller (4) If there exist 
symmetric positive definite matrices

, , , iX P S Q and ( )n n
jR in  and matrices 

variables 1N and 2 5( )n nN in  , and two 

arbitraryscalars 1 and 2 such that the 

following LMIsconditionshold forboth q = 1 
and q = 2: 
 

3

2 1
1

2 1

( )
0 (43)

* ( )


 
      

   

   

 

q q
i

i

X N

S

 

 
Where: 
 

1 1 1

2 2 2

0 0

0 0 0 0 0

,0 0

0 0 0 0 0

0 0

 
 
 
  
 
 
  

   

  

AX BF X

X AX BF X

AX BF X
 

 

1 1 5 1 1 2 1 2 1 2 4 2 4

2 5 2 1 1 5

( ) ( ) , (44)

( ) , (45)

     

   

T T T T
e

T

H e Pe e Q Q e e Qe e Q e

e S e
 

    1 2
3 3 4 2 3 (46)    T T T T

eH N e e N e e

 

 1 2 2 2
5 1 1 2 2 2 1 3 5 1 2 1 1 2

2 3 2 2 3 3 4 2 3 4

1
3 4 2 3 4 1 3 3 1 3

2

1 3 3 1 3 3 4 3 3 4

2 1
3 4 3 3 4

2
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(

)

) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( (4) ( ) , 7

       

     

     

     


  
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
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

T T

T T

T T

T T

T
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e e R e e e e R e e
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 2 2 2 2
5 1 1 2 2 2 1 3 5 1 2 1 1 2

2 3 2 2 3 3 4 2 3 4

1 3 3 1 3 3 4 3 3 4

2 3 2 2 3 1 3 3 1 3
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( ) ( ) ( ) ( )

)

( ) ( ) ( ) ( )

( ) ( ) ) ) (4( ( 8

       

     

     

     

    T T
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T T
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Proof2: Let      1 10 0

TT T TT X X X  and

  .
T

XD diag X X X X X Pre and post-

multiplying (12) by XD and its transpose 

respectively and with the change of variables 
   2 2, , ,T T TF KX P X PX S X SX Q X Q X

3, , ,T T
i i l lR X R X i Q X Q X  I and

  2( , ).q T
l lN X l IN X q  

Oneobtains the conditions expressed 
intheorem2. This completes the proof. 
 
4. Numerical examples 
 
In order to illustrate the effectiveness of the 
main results obtained in the previous section, 
we provide a comparison with  
those of some well-known numerical 
examples. 
 
Example1: Consider the following NCS 
model: 

0 1 0 0
, .

1 2 1 1
A B K

   
           

 

 

For various given value of 1 , the allowable 

upper bounds 2 which guarantee the 

asymptotic Stability of system (6) are listed in 
Table (1).  
Among all the considered results it can be 
seen that the stability results obtained in 
thispaper are less conservative.  
 

Table 1: maub( 2 )with varying 1 of Example 1. 
Considered 

results 
2 3 4 5 

[12] 2.4884 3.3403 4.3424 5.2970 
[15] 2.5608 3.4542 4.3787 5.3228 
[7] 2.6134 3.50464 4.4271 5.3696 
[5] 2.6344 3.5124 4.4304 5.3709 

Theorem 1 2.6684 3.5688 4.4867 5.4230 
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To show that our approach is more effective 
to reduce conservatism, a simulation of the 
NCS has been realized with the initial 
condition are: 

 (0) 0.5 0.5  T
x

 
and 2 ( ) 2.6684  t .  

The state trajectories of the system (6) with 
parameters described in example 1 and 
network-induced delay (3) are plotted in 
Fig.1, which shows that the NCS (6) is 
asymptotically stable. 

 
Figure 1:  State response and network-induced   
delay signals of Example 1. 

 
Example 2: Network control of a satellite 
model.In this example,   the satellite model 
investigated in [6] is considered, this system 
”without  disturbance” can be represented by 
the following state space matrices : 

0 0 1 0 0

0 0 0 1 0
, .

0.3 0.3 0.004 0.004 1

0.3 0.3 0.004 0.004 0

   
   
    
    
       

A B
 

The goal is to design the gain matrix K  such 
that networked controller is asymptotically 
stabilizing the satellite model (4). By using 
theorem 2 with 

1 10.01, 0.5   and
2 0.3 the 

maximum allowable upper bound of network-
induced delay

2( ) 0.6maub  is under the 

state feedback gain 
 0.1622 0.0422 0.6699 0.1254 .   K  

For this case, Fig.2 shows the NCS closed-
loop trajectories of the satellite and the 
network-induced delay as well as the control 
signal from the initial state

 (0) 0.1 0.5 0.3 0.2 ,  
T

x  

 

Figure 2: States response, network-induced 
delay signals of satellite model. 

We can notice that the satellite model is 
properly stabilized by the designed NCS 
controller. 

Conclusion 
 
In this paper, a new stability criteria using 
Lyapunov-Krasovskii for sampled-data NCSs 
model with time-varyingdelays is presented.  
The resulting LKF’s cross terms are 
estimated via new integral inequalities which 
allowing more stability conservativeness 
compared with other methods.   
Arobust state feedback controller design 
approach is also derived from the new 
stability criteria. 
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