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Abstract: This paper explores the stabilization of the three-dimensional fractional-order (FO)
chaotic Lorenz-84 atmosphere model through control strategies. Employing the Griinwald-Letnikov
approximation for fractional integration, the chaotic system is simulated to understand its intricate
dynamics. The main focus lies in utilizing state-space feedback control to adapt input signals based
on system states, aiming to steer chaotic dynamics towards stability. Additionally, control gains
optimization is conducted through particle swarm optimization (PSO) to guarantee robust

stabilization of the chaotic atmosphere model.
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1. INTRODUCTION

For decades, chaotic systems — those that
exhibit unpredictable but deterministic behavior
— have captivated scientists [1]. Now, a new
layer of complexity is emerging: partial chaotic
systems. These systems are described by
more complex mathematics that go beyond the
realm of integer-order derivatives, and exhibit
richer dynamics, full of potential applications
across various disciplines [2]. However,
harnessing this potential depends on our ability
to control these complex systems.

Controlling  partial  chaotic  systems
represents an exciting frontier with broad
implications across engineering, biology, and
secure communications [3]. Methodologies
include traditional control techniques, partial-
order  controllers, adaptive  strategies,
optimization, and chaos synchronization [4].
Challenges include limited understanding,
robust controller design, scalability,
computational complexity, and experimental
validation [2]. Addressing these issues requires
multidisciplinary collaboration to unleash their
full potential.

Among the countless complex dynamic
behaviors observed in the natural sciences,
atmospheric models stand out as an exemplary
case study. In 1984, Edward Lorenz made
modifications to his system of equations, giving
birth to the Lorenz-84 model [5]. By taking
advantage of hyper-graphs, we detect chaos

situations characterized by incorrect values,
leading to deeper exploration [6-7].

Our methodology is based on the Griinwald-
Letnikov approximation of partial integral to
simulate and understand the complex behavior
of the system [8]. Our primary goal Reducing
the chaotic tendencies inherent in the model
and guiding it towards stability using advanced
control methodologies.

Central to our approach is the use of state
space feedback control, a powerful technique
for manipulating system dynamics by modifying
input signals based on system states [9].
Furthermore, we harness the capabilities of
particle swarm optimization (PSO) - a nature-
inspired transformational algorithm - to
determine the optimal control gains, ensuring
effective stability of the chaotic Lorenz-84
atmospheric model [10].

This paper is organized as follows: Section
Il presents some basic definitions of fractional
calculus. Section Ill is dedicated to the
description of the fractional order Lorenz-84
system. Then, Section |V presents the
proposed control strategy. Simulation results
are given in Section V whereas Section VI
concludes this paper.
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2. FRACTIONAL-ORDER OPERATORS

With a 300-year history, fractional calculus
extends differentiation/integration for non-
integer orders, finding recent application in
control systems through definitions such as
Caputo and Griinwald-Letnikov derivatives
[6,12].

A. Grunwald-Leitnikov (G-L) Definition

For g>0, the definition of the G-L fractional
order derivative is

D) = limh™ Eo(=1) () £k = jh)
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The fractional G-L integration is formulated as:
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B. Grunwald-Leitnikov (G-L) approximation

Due to sampling in industrial control, numerical
approximations are essential for capturing the
fractional dynamics.

The Grinwald-Letnikov (G-L) approximation for
the fractional derivative integral of causal
function f(t) at time t=kh is given by:

DIf(kh) = h™1 Z_ow f(kh — jh) (6)

17, f(kh) = kY T5_ow " f(kh —jh) ~ (7)

The coefficients w;'and w;™" represent binomial
coefficients from the expressions (8) and (10),

respectively. These coefficients can be
computed using the following two recursive
formulas forj=1, 2, ..., k.

q_ -y _
Wo =W =

q _ _ 1+aq) g Y — A P 4
w! = (1= wlow” = (1= w2

3. FRACTIONAL-ORDER CHAOTIC LORENZ-84
MODEL.

The equations below define the fractional
Lorenz-84 system [9]:

Dx,(t) = —ax; — x3 —x% + aF
D%, (t) = —x;, —x,%, —bx;x3 + G (8)
Dx,(t) = —x3 + bx,;x, + x, X3

e X1, X2, and Xxs represent global westerly
current, cosine phase strength, and sine
phase strength, respectively.

e Parameters a and b represent advection of
wave strength by easterly and westerly
currents, respectively.

e F and G are positive thermal forcing terms
that typically depend on temperature
constants

25

Figure 1. Bifurcation diagram x2=f(q)

By a simple analysis, we obtain an unstable
equilibrium point.

E = (7.99626863,
0.029837024).

To select the appropriate fractional order, we
analyze the bifurcation diagram that shows the
evolution of x> with respect to q in Figure 1.

When (F, G, a, b) = (8, 1, 0.25, 4) [13], the
diagram allows us to identify the interval over
which chaos exists. In our investigation, we
selected a specific fractional system (q = 0.83)
and analyzed the resulting attractor, which is

0.00652641402,
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shown in Figure 2 and Figure 3. The initial
conditions used were x(0) = 1, y(0) = 1, and
z(0) = 1.

Figure 2. v(t + 1);; = w.v(t);; + cyrypbest(t);; — x(t);; +
c,1y(gbest; — x(t);;)Phase plane of fractional chaotic
Lorenz-84

5

I(sec)

Figure 3. State Variables of Fractional Lorenz-84 System

4. CONTROL STRATEGY

To control chaos in the Lorenz-84 model,
we use a combination of State Feedback
Control and Particle Swarm Optimization (PSO)
based on ITAE as the key function.

A. State Space Feedback Control

Guiding a dynamic system to an equilibrium
point using state-space equations and
feedback control, where the control input is

U=kx 9
K is the feedback gain matrix.

B. Particle Swarm Optimization (PSO)

An algorithm inspired by animal social
behavior optimizes control gains for a state-
space feedback controller, stabilizing the FO-
chaotic Lorenz-84 model. This is achieved
through iterative optimization of particle
velocities and positions, guided by individual
and neighbor experiences as follows [6]:

Velocity update:
v(t+1);=w.v(t);+c,r,pbest(t);—x(t);+c,r,(gbest;—x(t);)
(10)

Position update:

x(t +1);; = x(t);; + v(t + 1),
(11)

Where:

e V(t)j is the velocity of particle i in dimension j
attime t.

o X(t)jis the position of particle i in dimension j
attime t.

e wis the inertia weight, controling the
influence of the previous velocity.

e c1 and c2 are acceleration coefficients
representing the cognitive and social
components, respectively.

e 11 and rz are random numbers sampled from
a uniform distribution in the range [0, 1].

e pbestj is the best position achieved by
particle i in dimension j so far.

e gbest; is the best position achieved by any
particle in dimension j so far.

1) Integral Time Absolute Error (ITAE)
The system's performance is evaluated by
looking at the total error over time, calculated
using the formula [14]:

ITAE = [;"le(t)| tdt (12)

where e(t) is the error at a given time.

5. SIMULATION RESULTS

The following model describes the
controlled fractional chaotic Lorenz-84 system
incorporating the previously defined controller:

dx; 5 5

qra = @ T Xz X3 +aF — kix;

dxg

pq = X2 T X1Xp — bxixz + G — kyx, (13)
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dox?
Ja = —X5 + bxyx, + x,%5 — kx4

In this study, we look for the stabilization of
the fractional chaotic Lorenz-84 system on its
unstable equilibrium point.

In order to find the best values for controller
parameters ki, ko, and ks, we employed a PSO
algorithm. The optimized values of k are shown
in Figure 4 and the corresponding reduction in
error is evident in Figure 5.

995 |- .

5 6
iteration

Figure 4. Optimized Controller Parameters Using PSO
Algorithm

Error(x2)

=
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Figure 5. Reduction in Error Corresponding to Optimized
Controller Parameters

We utilize feedback with gains ki= 0.9, k2 =
0.01, and ks= 0.05 to stabilize the Lorenz-84
fractional chaotic system at a desired
equilibrium point. The results are presented in
Figure 6 and Figure 7.

Figure 6. State Variables of Fractional Lorenz-84 System
with Control

Figure 7. Phase plane of fractional chaotic Lorenz-84 with
Control

Simulation results show that the proposed
controller is able to stabilize the fractional order
chaotic system within a reasonable time.

6. CONCLUSION

This study explores stabilizing the three-
dimensional fractional-order chaotic Lorenz-84
atmosphere model using control strategies. We
employ the Grinwald-Letnikov approximation
for fractional integration to accurately capture
system dynamics. State-space feedback
control adjusts input signals based on system
states, guiding chaotic dynamics towards
stability. Additionally, Particle Swarm
Optimization (PSO) optimizes control gains to
ensure robust stabilization. Results illustrate
the effectiveness of state-space feedback
control and PSO in stabilizing chaotic behavior.
This research significantly contributes to
understanding the control of fractional-order
chaotic systems.
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