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Abstract: This paper explores the stabilization of the three-dimensional fractional-order (FO) 

chaotic Lorenz-84 atmosphere model through control strategies. Employing the Grünwald-Letnikov 
approximation for fractional integration, the chaotic system is simulated to understand its intricate 
dynamics. The main focus lies in utilizing state-space feedback control to adapt input signals based 
on system states, aiming to steer chaotic dynamics towards stability. Additionally, control gains 
optimization is conducted through particle swarm optimization (PSO) to guarantee robust 
stabilization of the chaotic atmosphere model. 
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1. INTRODUCTION 
For decades, chaotic systems – those that 

exhibit unpredictable but deterministic behavior 
– have captivated scientists [1]. Now, a new 
layer of complexity is emerging: partial chaotic 
systems. These systems are described by 
more complex mathematics that go beyond the 
realm of integer-order derivatives, and exhibit 
richer dynamics, full of potential applications 
across various disciplines [2]. However, 
harnessing this potential depends on our ability 
to control these complex systems. 

Controlling partial chaotic systems 
represents an exciting frontier with broad 
implications across engineering, biology, and 
secure communications [3]. Methodologies 
include traditional control techniques, partial-
order controllers, adaptive strategies, 
optimization, and chaos synchronization [4]. 
Challenges include limited understanding, 
robust controller design, scalability, 
computational complexity, and experimental 
validation [2]. Addressing these issues requires 
multidisciplinary collaboration to unleash their 
full potential. 

Among the countless complex dynamic 
behaviors observed in the natural sciences, 
atmospheric models stand out as an exemplary 
case study. In 1984, Edward Lorenz made 
modifications to his system of equations, giving 
birth to the Lorenz-84 model [5]. By taking 
advantage of hyper-graphs, we detect chaos 

situations characterized by incorrect values, 
leading to deeper exploration [6-7]. 

Our methodology is based on the Grünwald-
Letnikov approximation of partial integral to 
simulate and understand the complex behavior 
of the system [8]. Our primary goal Reducing 
the chaotic tendencies inherent in the model 
and guiding it towards stability using advanced 
control methodologies. 

Central to our approach is the use of state 
space feedback control, a powerful technique 
for manipulating system dynamics by modifying 
input signals based on system states [9]. 
Furthermore, we harness the capabilities of 
particle swarm optimization (PSO) - a nature-
inspired transformational algorithm - to 
determine the optimal control gains, ensuring 
effective stability of the chaotic Lorenz-84 
atmospheric model [10]. 

This paper is organized as follows: Section 
II presents some basic definitions of fractional 
calculus. Section III is dedicated to the 
description of the fractional order Lorenz-84 
system. Then, Section IV presents the 
proposed control strategy. Simulation results 
are given in Section V whereas Section VI 
concludes this paper. 
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2. FRACTIONAL-ORDER OPERATORS 
With a 300-year history, fractional calculus 

extends differentiation/integration for non-
integer orders, finding recent application in 
control systems through definitions such as 
Caputo and Grünwald-Letnikov derivatives 
[6,12].  

A. Grunwald-Leitnikov (G-L) Definition 
For q>0, the definition of the G-L fractional 

order derivative is 

( ) = ( 1) ( )   
(1) 

Where h is a sample period, and coefficients: 

= = ( )
( ) ( )                          (2) 

 
With = 0 = 1are the following binomial 
coefficients : 
 
( ) = ( 1) = ( )                  

(3) 
 
The fractional G-L integration is formulated as: 

( ) = ( 1) ( ) (4) 
 
With = 0 = 1are the following binomial 
coefficients : 

( ) = ( 1) = ( )  

(5) 
 

B. Grunwald-Leitnikov (G-L) approximation 
 
Due to sampling in industrial control, numerical 
approximations are essential for capturing the 
fractional dynamics. 
The Grünwald-Letnikov (G-L) approximation for 
the fractional derivative integral of causal 
function f(t) at time t=kh is given by: 
 

( ) ( )          (6) 

( ) ( )         (7) 

 
The coefficients and  represent binomial 
coefficients from the expressions (8) and (10), 

respectively. These coefficients can be 
computed using the following two recursive 
formulas for j = 1, 2, ..., k. 

= = 1 

= , =  

 

3. FRACTIONAL-ORDER CHAOTIC LORENZ-84 
MODEL. 

 
The equations below define the fractional 

Lorenz-84 system [9]: 
( ) +  

( ) +      (8) 
( ) + +  

 x1,  x2, and x3 represent global westerly 
current, cosine phase strength, and sine 
phase strength, respectively.  

 Parameters a and b represent advection of 
wave strength by easterly and westerly 
currents, respectively.  

 F and G are positive thermal forcing terms 
that typically depend on temperature 
constants 
 

 
 
 
 
 
 
 
 
 

Figure 1.  Bifurcation diagram x2=f(q) 

By a simple analysis, we obtain an unstable 
equilibrium point. 
E = (7.99626863, 0.00652641402, 
0.029837024). 
To select the appropriate fractional order, we 
analyze the bifurcation diagram that shows the 
evolution of x2 with respect to q in Figure 1. 

When (F, G, a, b) = (8, 1, 0.25, 4) [13], the 
diagram allows us to identify the interval over 
which chaos exists. In our investigation, we 
selected a specific fractional system (q = 0.83) 
and analyzed the resulting attractor, which is 
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shown in Figure 2 and Figure 3. The initial 
conditions used were x(0) = 1, y(0) = 1, and 
z(0) = 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 2.  ( + 1) ( ) ( ) ( ) +

( ) Phase plane of fractional chaotic 
Lorenz-84 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  State Variables of Fractional Lorenz-84 System 

 

4. CONTROL STRATEGY                        
To control chaos in the Lorenz-84 model, 

we use a combination of State Feedback 
Control and Particle Swarm Optimization (PSO) 
based on ITAE as the key function.   

 

A. State Space Feedback Control 
Guiding a dynamic system to an equilibrium 

point using state-space equations and 
feedback control, where the control input is  

                       (9) 
K is the feedback gain matrix. 
 

B. Particle Swarm Optimization (PSO) 
An algorithm inspired by animal social 

behavior optimizes control gains for a state-
space feedback controller, stabilizing the FO-
chaotic Lorenz-84 model. This is achieved 
through iterative optimization of particle 
velocities and positions, guided by individual 
and neighbor experiences as follows [6]: 

Velocity update: 

 
(10) 

Position update: 
( + 1) ( ) ( + 1)                   

(11) 
 
Where: 

 v(t)ij is the velocity of particle i in dimension j 
at time t. 

 x(t)ijis the position of particle i in dimension j 
at time t. 

 wis the inertia weight, controlling the 
influence of the previous velocity. 

 c1 and c2 are acceleration coefficients 
representing the cognitive and social 
components, respectively. 

 r1 and r2 are random numbers sampled from 
a uniform distribution in the range [0, 1]. 

 pbestij is the best position achieved by 
particle i in dimension j so far. 

 gbestj is the best position achieved by any 
particle in dimension j so far. 

1) Integral Time Absolute Error (ITAE) 
The system's performance is evaluated by 

looking at the total error over time, calculated 
using the formula [14]: 

= | ( )|                        (12) 

where e(t) is the error at a given time. 
 

5. SIMULATION RESULTS 
 

The following model describes the 
controlled fractional chaotic Lorenz-84 system 
incorporating the previously defined controller:  

 

         (13) 
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+ +  
 
In this study, we look for the stabilization of 

the fractional chaotic Lorenz-84 system on its 
unstable equilibrium point. 

In order to find the best values for controller 
parameters k1, k2, and k3, we employed a PSO 
algorithm. The optimized values of k are shown 
in Figure 4 and the corresponding reduction in 
error is evident in  Figure 5. 

 
 
 
 
 
 
 

 

 
Figure 4.  Optimized Controller Parameters Using PSO 

Algorithm 

 

 
 
 
 
 
 
 
 
 
Figure 5.  Reduction in Error Corresponding to Optimized 

Controller Parameters 

 
We utilize feedback with gains k1=  0.9,  k2 = 
0.01, and k3= 0.05 to stabilize the Lorenz-84 
fractional chaotic system at a desired 
equilibrium point. The results are presented in 
Figure 6 and Figure 7. 
 
 
 
 
 
 

 

 

 

 
 
 
Figure 6.  State Variables of Fractional Lorenz-84 System 

with Control 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Phase plane of fractional chaotic Lorenz-84 with 

Control 

Simulation results show that the proposed 
controller is able to stabilize the fractional order 
chaotic system within a reasonable time. 

 

6. CONCLUSION 
 

This study explores stabilizing the three-
dimensional fractional-order chaotic Lorenz-84 
atmosphere model using control strategies. We 
employ the Grünwald-Letnikov approximation 
for fractional integration to accurately capture 
system dynamics. State-space feedback 
control adjusts input signals based on system 
states, guiding chaotic dynamics towards 
stability. Additionally, Particle Swarm 
Optimization (PSO) optimizes control gains to 
ensure robust stabilization. Results illustrate 
the effectiveness of state-space feedback 
control and PSO in stabilizing chaotic behavior. 
This research significantly contributes to 
understanding the control of fractional-order 
chaotic systems. 
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